COMPUTER SCIENCE & IT

GATE / PSUs

STUDY MATERIAL DIGITAL SYSTEMS

COMPUTER SCIENCE

% FI

COMPUTER SCIENCE & IT GATE & PSUs

STUDY MATERIAL

DIGITAL SYSTEMS

©2025-26 ENGINEERS INSTITUTE OF INDIA® Online Class, Offline Classroom, Postal, Online, Test-Series 59B, Kalu Sarai Hauz Khas, New Delhi-110016. Ph. 9990357855, 9990657855 www.engineersinstitute.com

CONTENT

1.	BINARY SYSTEM	3-20
2.	BOOLEAN ALGEBRA & LOGIC GATES	21-45
3.	GATE LEVEL MINIMIZATION	46-50
4.	DIGITAL LOGIC FAMILIES	51-87
5.	COMBINATIONAL CIRCUITS	88-118
6.	SEQUENTIAL DIGITAL CIRCUITS	119-143
7.	SEMICONDUCTOR MEMORIES	144-150
8.	A/D AND D/A CONVERTERS	151-157

CHAPTER-1

BINARY SYSTEM

Base Conversion: A number a_n , a_{n-1} ... a_2 , a_1 a_0 · a_{-1} a_{-2} a_{-3} ... expressed in a base r system has coefficient multiplied by powers of r.

$$\boxed{a_{n}r^{n} + a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + \dots + a_{1}r + a_{0} + a_{-1}r^{-1} + a_{-2}r^{-2} + a_{-3}r^{-3} + \dots} \dots (A)$$

Coefficients a_i ; range from 0 to r - 1

Key Points:

To convert a number of base r to decimal is done by expanding the number in a power series as in (A)

Then add all the terms.

Example 1: Convert following Binary number $(11010.11)_2$ in to decimal number.

Solution:

Base r = 2

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

 $(11010.11)_2 = (26.75)_{10}$

Example 2: Convert (4021.2)₅in to decimal equivalent

Solution: $4 \times 5^3 + 0 \times 5^2 + 2 \times 5^1 + 1 \times 5^0 + 2 \times 5^{-1}$

 $=(511.4)_{10}$

Example 3: Convert (127.4)₈ in to decimal equivalent.

Solution: $1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 4 \times 8^{-1}$

 $=(87.5)_{10}$

Numbers with Different bases:

Decimal $(r = 10)$	Binary $(r = 2)$	Octal $(r = 8)$	Hexadecimal $(r = 16)$
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8

CS & IT		DIGITAL SYSTEMS			
09	1001	11	9		
10	1010	12	А		
11	1011	13	В		
12	1100	14	С		
13	1101	15	D		
14	1110	16	Е		
15	1111	17	F		

Example 4: Convert following hexadecimal number into decimal number: (B65F)₁₆ **Solution:**

 $11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46.687)_{10}$

Conversion of decimal number to a number in base r:

- Separate the number into an integer part and fraction part.
- Divide the number and all successive quotients by r and accumulate the remainders.
- Conversion of decimal fraction is done by multiplying the fraction and all successive fraction and integers are accumulated.

Example 1: Convert decimal number 41 to binary.

Solution:

		Integer quotient		Remainder	Coefficient
41/2	=	20	+	1	$a_0 = 1$
20/2	=	10	+	0	$a_1 = 0$
10/2	=	5	+	0	$a_2 = 0$
5/2	=	2	+	1	a ₃ = 1
2/2	=	1	+	0	$a_4 = 0$
1/2	=	0	+	1	$a_5 = 1$
					$(101001)_2$

$$(41)_{10} \rightarrow (101001)_2$$

Example 2: Convert $(153)_{10}$ to octal.

Solution:

Required base r is 8.

153 are divided by 8 to give integer quotient of 19 and remainder 1. Then 19 are divided by 8 to give integer quotient of 2 and remainder 3. Finally 2 are divided by 8 to give quotient of 0 and remainder of 2.

 $\begin{array}{c|c}2 & 3\\0 & 2\end{array}$

Thus $(153)_{10} \rightarrow (231)_8$

Example 3:Convert $(0.6875)_{10}$ to Binary.

Solution: 0.6875 is multiplied by 2 to give an integer and a fraction. The new fraction is multiplied by 2 to give a new integer and new fraction.

 $(231)_{8}$

This process is continued until the fraction becomes zero or until the numbers of digits have sufficient accuracy.

]	Integer		Fraction	Coefficient
0.6875×2	=	1	+	0.3750	$a_{-1} = 1$
0.3750×2	=	0	+	0.7500	$a_{-2} = 0$
0.7500 × 2	=	1	+	0.5000	a_3 = 1
0.500×2	=	1	+	0.0000	a_4 = 1
(0.687	$(5)_2 \rightarrow (0.1)$	1011) ₂			
Example 4:Convert (0.513)10 to octal.					
Solution:					
0.513 × 8	=	4	+	0.104	$a_{-1} = 4$
0.104×8	=	0	+	0.832	$a_{-2} = 0$
0.832 × 8	=	6	+	0.656	$a_{-3} = 6$
0.656×8	=	5	+	0.248	a_4 = 5
0.248×8	=	1	+	0.984	$a_{-5} = 1$
0.984×8	=	7	+	0.872	
Answer to seven significant figures is:					

(0.406517...)₈

Thus $(0.513)_{10} \rightarrow (0.406517)_8$

 $(41.6875)_{10} \rightarrow (101001.1011)_2$

 $(153.513)_{10} \rightarrow (231.406517)_8$

Octal and hexadecimal numbers:

DIGITAL SYSTEMS

Conversion from binary to octal is easily done by partitioning the binary number into groups of 3 digits each starting from binary point & proceeding to left and to the right.

The corresponding octal digit is then assigned to each group.

For conversion into hexadecimal, binary number is divided into group of 4 digits and the corresponding hexadecimal digit is then assigned to each group.

Example 5: $(2 \ 6 \ 1 \ 5 \ 3.7 \ 4 \ 6 \ 0)_8$ to binary number

Solution: 010 110 001 101 011 · 111 100 110 000

Thus binary number is

(010 110 001 101 011.11110011000)2

Example 6 : Convert binary to hexadecimal number:

 $(10\ 1100\ 0110\ 1011.1111\ 0010)_2$

0010 1100 0110 1011. 1111 0010

2 C 6 B F $2 = (2C6B.F2)_{16}$

Example 7:(673.124)₈ to binary number:

 $(673.124)_8 \equiv (110\ 111\ 011\ \cdot\ 001\ 010\ 100)_2$

6 7 3 1 2

 $(306.D)_{16}$ to binary number:

 $(306.D)_{16} \equiv (0011\ 0000\ 0110\ .\ 1101)_2$

3 0 6

Note: In communication, octal or hexadecimal represented is more desirable because it can be expressed more compactly with a third or a quarter of the number of digits required for the equivalent binary number.

4

D

Complements: Complements are used in digital computer for simplifying the subtraction operations and for logic manipulation. *There are 2 types of complements for each base r system*

- 1. Radix complements (r's complement)
- 2. Diminished radix complement ((r-1)'s complement
- 1. Diminished radix complement:
 - Given a number N in base r having n digits, the (r 1)'s complement of N is defined as (rⁿ 1) N.
 - For decimal number r = 10, (r 1)'s complement or 9's complement of N is $(10^n 1) N$.

9's complement: $(10^{n} - 1) - N$

- 10ⁿ can be represented as single 1 followed by n 0's
- $10^n 1$ is number represented by n 9's.
- Thus 9's complement can be obtained by subtracting each digit of number N by 9.

Example 8: Find 9's complement of 546700

Solution:

999999 - 546700 = 453299

9's complement of 546700 is 453299

1's Complement for binary number:

- It is given as $(2^n 1) N$
- 2^n can be representing as binary number consist of single 1 followed by n 0's.
- $2^n 1$ can be represented as n 1's.

Example 9: 24→ 10000

- $24-1 \rightarrow (1111)_2$
- Thus 1's complement can be obtained as $(2^n 1) N$ or subtracting each digit of number from 1.

Example 10: 1's complement of 1011000.

Solution: 1111111 - 1011000 = 0100111

Note: It is similar to changing 1's to 0's and 0's to 1 or complement each digit of number is similar to taking 1's complement of the number.

Note: (r - 1)'s complement of octal or hexadecimal number is obtained by subtracting each digit from 7 and F respectively.

Example 11: Obtain 15's complement of number (3241)₁₆

Solution: Subtracting each digit of number from FFFF:

F FFF <u>- 3 2 4 1</u> C DBE

15's complement is (CDBE) 16.

(ii) Radix Complement:

r's complement of n digit number N in base r is defined as $r^n - N$ for $N \neq 0$ & 0 for N = 0

It is equivalent to adding 1 to (r-1)'s complement.

If (r-1)'s complement is given, r's complement can be obtained.

Problem :Find r's complement of 546700 if its 9's complement is 453299.

Solution: r's complement is 453299 + 1

r's complement = 453300

Example 12: 2's complement of 1010110 is:

Solution: 1's complement: complement each digit of number $(1010110) \rightarrow (0101001)_2$

Thus 2's complement is 0101001 + 1

2's complement = (0101010)2

Another Method to Obtain 10, 2's Complement:

Leaving all least significant 0's unchanged, subtracting the first non-zero least significant digit from 10 and subtracting all higher significant digits from 9.

Example 13: Find 10's complement of 012398.

Solution:

- 1. Subtract 8 from 10 in the least significant position
- 2. Subtracting all other digits from 9.

9999910

- 01239 8

98760 2

Thus 10's complement of 012398 is 987602.

Example 14: 10's complement of 246700.

Solution: Leaving 2 least significant 0's unchanged, subtracting 7 from 10 and other 3 digits from 9.

Thus 10's complement of 246700 is 753300

Similarly 2's complement can be formed by leaving all least significant 0's and first 1 unchanged and replacing 1's with 0's and 0's with 1's in all other higher significant digits.

Example 15: 2's complement of (1101100)₂:

Solution:

1 1 0 1 1 0 0 Remain unchanged Reverse all digital after this

Thus 2's complement of 1101100 is (0010100)₂

Subtraction with complement:

- 1. Convert subtrahend N to r's complement.
- 2. Then add to the minuend M.

- **3.** If $M \ge N$, sum will produce end carry, which can be discarded, what is left is the result, M N.
- 4. If M < N, sum does not produce carry and is equal to $r^n (N M)$, which is same as r's complement of (N M).

5. To take the answer in familiar form, take the r's complement of the sum and place a negative sign in front.

Example 15:Using 10's complement, subtract 72532 – 3250

Solution: M = 72532

N = 03250

10's complement of N = 96750

Sum: 72532

CS & IT

+ 96750

169282

Discard end carry as M > N so result: 69282

Example 16:Using 10's complement, subtract 3250 – 72532

Solution: $M = 3250$
N = 72532
10's complement of 72532 is
9999 10
<u>- 7253 2</u>
10's complement 27468
Sum: 3250
<u>27468</u>
Sum 30718
Since $N > M$ so no end carry.
Therefore answer is $-(10$'s complement of $30718) = -69282$
Example 16:Subtract 1010100 – 1000011
Solution: 2's complement of N (1000011)=0111101
Sum: 1010100
+0111101
10010001
So result is 0010001

Example 17:Subtract: 1000011 – 1010100

Solution: 2's complement of $1010100 \rightarrow 0101100$

Sum: 1000011 + 0101100 1110111

There is no end carry. Therefore, answer is -(2's complement of 1101111)

= **-**0010001

Note: Subtraction can also be done using (r-1)'s complement.

Signed Binary numbers: When binary number is signed, left most bit represents the sign and rest of bits represent the number.

- If binary number is unsigned, then left most bits is the most significant bit of the number.
- Positive or Negative can be represented by (0 or 1) bit which indicate the sign.

Example 19:String of bits 01001 can be considered as 9 (unsigned binary) or +9 (signed binary) because left most bits are 0.

Example 20:String of bits 11001 represent 25 when considered as unsigned number or -9 when considered as signed number.

Negative number representation:

(i) Signed magnitude representation: In this representation number consists of a magnitude and a symbol (+ or -) or bit (0 or 1) indicating the sign. left most bit represents sign of a number.

 $E\xi.:11001 \rightarrow -9$

 $01001 \rightarrow +9$

(ii) Signed complement system:

- In this system, negative number is indicated by its complement.
- It can use either 1's or 2's complement, but 2's complement is most common.

Note:

1. 2's complement of positive number remain number itself.

2. In both signed magnitude & signed complement representation, the left most significant bit of negative numbers is always 1.

Example: +9 ® 00001001

- 9 ® 11110111 (2's complement of +9)

Note: Signed complement of number can be obtained by taking 2's complement of positive number including the sign bit.

- Signed magnitude system is used in ordinary arithmetic, cannot employed in computer arithmetic because of separate handling of the sign and the magnitude.
- In computer arithmetic signed complement system is used to represent negative numbers.

Decimal	Signed 2'Complement	Signed 1's complement	Signed magnitude
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100

Arithmetic addition:

- Addition in signed magnitude system follows rules of ordinary arithmetic.
- Example. +25 + -37 = -37 + 25 = -12
- Thus In this, comparison of sign and magnitude and then performing either addition or subtraction.
- But in signed complement system, only addition, it does not require comparison & subtraction.
- In signed complement system, negative numbers are represented in 2's complement form and then addition to other number including their sign bits.

Example:	+ 6	00000110	- 6	11111010 (2's complement)
	+13	00001101	+13	00001101
	+19	00010011	+ 7	100000111
	+ 6	00000110	- 6	11111010
	- 13	11110011	-13	11110011
	- 7	111111001	-19	11101011

[Left significant bit is 1 so number is negative, number will be –(2's complement of 111111001)

$$= -(000000111) = -7$$

Number will be (2's complement of 11101011) = -(00010101) = -(19)

Note: If result of sum is negative, then it is in 2's complement form.

The left most significant bit of negative numbers is always 1.

• If we use signed complement system, computer needs only one hardware circuit to handle both arithmetic (signed & unsigned), so generally signed complement system is used.

Binary Codes:

Any discrete element of information distinct among a group of quantities can be represented with a binary code.

• n bit binary code is a group of n bits that have 2n distinct combinations of 1's and 0's with each combination representing one element of the set that is being coded.

Example: With 2 bits $2^2 = 4$ elements can be coded as: 00, 01, 10, 11

With 3 bits $2^3 = 8$ elements can be coded as:

000, 001, 010, 011, 100, 101, 110, 111

- Minimum number of bits required to code 2ⁿ distinct quantities in n.
- The bit combination of an n bit code is determined from the count in binary from 0 to $2^n 1$.

Example: 3 bit combination

- 000 0
- 001 1
- 010 2
- 011 3
- 100 4
- 101 5
- 110 6
- 111 7

BCD code:

Binary coded decimal

- A number with k decimal digits require 4 k bits in BCD.
- A decimal number in BCD is same as its equivalent binary number only when number is between 0 to 9.
- BCD number needs more bits than its equivalent binary.
- Example: $(185)_{10} = (000110000101)_{BCD} = (1011101)_2$
- In BCD number, each bit is represented by its equivalent binary representation.

Note: BCD numbers are decimal numbers and not binary numbers, although they use bits in their representation.

Published Books

Office: 58B, Kalu Sarai Near Hauz Khas Metro Station New Delhi-16

Helpline: 9990657855 , 9990357855

www.engineersinstitute.com